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Abstract
We consider the asymptotic nonlinear filtering problem dz f(x)dt -+V/tdw, d = h(z)dt + 4dv, and obtain li-.ologq(t) =-W()

.4 for unnormalised conditional densities qt (x,t) using PDE methods. Here,W'(z,t) is the value function for a deterministic optimal control problemarising in Mortensen's deterministic estimation, and is the unique viscosity
solution of a Hamilton-Jacobi-Bellman equation. Hijab has also studiedthis filtering problem, and we extend his large deviation result for certainunnormalised conditional measures. The resulting variational problem cor-responds to the above control problem.
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I Introduction

An important problem in nonlinear system theory is the construction of
observers for control systems of the form

f ( U),()
r•:-"= h~x).
Vh

Baras and Krishnaprasad I! have proposed a method for constructing an

observer as a limit of nonlinear filters for a family of associated filtering
problems (3), parameterised by c > 0. More recent work in this direction is
presented in Baras, Bensoussan and James 12). It is of interest then to study

the asymptotic behaviour of the corresponding unnormalised conditional
densities q'(x,t) as c - 0, via the Zakai equation (5). We obtain the
asymptotic formula

q'(z,t) -e-(w('t)+°)), (2)

as c --+ 0, where W(z,t) is the value function corresponding to a determin-

istic optimal control problem, namely that arising in deterministic estima-

tion.
Hijab 1]0 has studied this asymptotic estimation problem, and obtained

a \VK B expansion when W(z,t) is smooth. This identifies the limiting filter
as Mortensen's deterministic or minimum energy estimator [131. In addi-

tion, Hijab 11] has proved a large deviation principle for the conditional
measures for the filtering problem (3). We extend Hijab's large deviation

result by allowing random initial conditions in (3), and observe that the

resulting variational problem (c.f. action functional ) is exactly the optimal
control problem mentioned above.

The asymptotic formula for the unnormalised conditional densities
(Theorem 5.1) and the large deviation principle for the unnormalised con-

ditional measures (Theorem 6.2) characterise the limiting filter in terms of

the deterministic estimator.
Our method is inspired by the work of Fleming and Mitter (6', and Evans

and Ishii [5]. A logarithmic transformation is applied to the robust form

of the Zakai equation, yielding a Hamilton-Jacobi equation in the limit. A
related Hamilton-Jacobi equation is interpreted as the Bellman equation

for the deterministic estimation optimal control problem, of which W(z,t)
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is the ur, ique viscosity solution. In particulax, W(z,t) is not assumed to be
smooth.

Acknowledgements: We wish to thank Professor L. C. Evans for his

time and invaluable assistance. We also thank Dr Alan Weiss for his useful
comments regarding large deviations.

2 Problem Formulation

We consider a family of diffusion processes in I?" with real valued obser-
vations:

dx, (t) = f(x'(t))dt + ,Adw(t), x'(0) = 4, (3)
4'(t) = h(x'(t))dt + vAdv(t), y(0) = 0.

Here w, v are independent Wiener processes independent of the initial

conditions x4, which have (unnormalised) densities
q (z) = ,e -,SoC,) (4)

where lirnc 0 clog C, = 0 and So _ 0 is smooth and bounded. As c - 0
the trajectories of (3) converge in probability to the trajectory of a corre-
sponding deterministic system.

The Zakai equation for an unnormalised conditional density q'(Z,t) is
1

dq'(x,t) = A;q'(x,t) + -h(x)q'(z,t)dy'(t), (5)
€~~q(x,0) = z)

* where A, is the formal adjoint of the diffusion operator

A,= _ + A,(Z) .2 a2  a
We assume throughout the following: f,h are bounded C' functions

with bounded derivatives of orders 1 and 2. Defining

, ... p(z,t) =exp ! (6)

2
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the robust form of the Zakai equation is

p'(z,t) - Ap' (z,t) .+ Dp'(z,t)g'(,t) + -V'(z,t)p'(x,o) = 0, (7)

, P'( ,t) = (z),

where.,h.re g'(z, t) = f(z) - (t)Dh(,z)', (8)

V'(z,t) = h(z)' + ,i(t)A, h() (9)
12-IY(t) 2 Dh(z) 12 + tdiv(f'(z)- y (t)Dh(z)')
2

Note that (7) is a linear parabolic PDE and the coefficient V' de-
pends on the observation path t - y(t). We shall omit the c-dependence
of y, and view (7) as a functional of the observation path y' E lo =
C (0, Tj, I"; Iy(O) = 0). This transformation provides a convenient choice
of a version of the conditional density, and under our assumptions we can
recover the unnormalised density q'(zt) from solutions of (7); see for ex-
ample Pardoux [141.

Following Fleming and Mitter 16], who considered filtering problems
with i = 1, we apply the logarithmic transformation

S'(z,t) = -(logp'(z,t). (10)

Then S'(x,t) satisfies

,s'(z,t) - jAS'(zt) + H'(z,t,Ds'(x,t)) = 0, (11)

S'(Zo) = So(z),

where I
H '(Zt, A) = AP'(Zt) + I 12 -V'(z,t). (12)

Equation (11) is a nonlinear parabolic PDE, which can be interpreted as
the Bellman equation for a stochastic control problem [6].

Formally letting c -4 0 we obtain a Hamilton-Jacobi equation

S(z,t) + H(z,t,DS(zt)) =0 (13)

3
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S(z,O) =SO(Z),

whee 1(A =Ago(z'i) + lA j2-V(,t), (14)

go(x,t) = f(x) - y()Dh(x)', (15)

V(x,t) i h(z)l + &()Dh(z)f(z) - ! (IDh(x) 12. (16)

Note that g' - gc,, V, -_ V, and H' -4 H uniformly on compact subsets.
We shall interpret solutions of (13) in the viscosity sense. If we define

14(z,t) = S(z,t) -y(t)h(z), y Eflo, (17)

then, for y E flo nl C1, 1W(x, t) satisfies a Hamilton-Jacobi equation, which
in Section 3 is presented as the Bellman equation for the deterministic
estimation control problem.

Our main task is to prove that S' --+ S as c --+ 0 uniformly on compact
S. subsets. From this the asymptotic formula (2) will follow (Theorem 5.1).

3 Deterministic Estimation

We begin by reviewing Mortensen's method 113',, 11O1 of deterministic min-
imum energy estimation.

Given an observation record YI' = {y(s), 0 < s < t), 0 < t < T, of the
It deterministic system

f 1(z) + is, x(0) = o, (18)
h h(z) + v, V (0) 0,

we wish to estimate the state at time f, the initial condition z0 being un-
known. Define

it (Xo,U, V) =So (ZO) + -f (u (s) 12 + v(s)') ds. (9

A m in im um energy in pu t triple (z;,*,v) given Yt is a tr iple that minimises
Jsubject to the constraint that the trajectory of (18) produces the outp ut

if.. By replacing v(s) by i~(s) - h(z(s)) in (19) and omitting the )(s)' term,

4



we can formulate an equivalent unconstrained optimal control problem.

Define

J ,(,, u) = So(zo) + j L(z(s),u(s), s)ds, (20)

where
L(z,u,s) = U 12+ h - j(s)h(z). (21)

We now minimise Ji over pairs (z0, u). The deterministic or minimum
enerp estimate 1(t) given Y, is defined to be the endpoint of the optimal

trajectory a - z*(s), 0 _ a < 1, corresponding to a minimum energy pair
( ' (t).

Next, we use dynamic programming to study this problem. The controls
t - U~t) take values u E U = 1R", and are square integrable. Given such a
control, let z. denote the corresponding trajectory (given a specified initial
condition). Following the general scheme presented in Fleming and Rishel
(7], define a class of admissible pairs (zo, u) by

UZ., = {(Zo,t) : Z,,(0) = o, W(t) = =}, (22)

that is, pairs for which the corresponding trajectory passes through a spec-
ified point z at time t. Define a value function

w(z,t) = in J,(zo,u). (23)
(3o,U) E U..,

Note that this is a reversal of the standard set-up of dynamic programming
[71. By using standard methods, we see that W(z,t) is continuous and
formally satisfies the Bellman equation

.jW, .t) + I(z,t,Dwv(z,t)) = 0, (24)

W(zO) = So(Z),

where

.(,t, ) = max (,A(f(z) + ,)- L(z,,,,t)). (25)

W(z,t) is the minimum value (if it is attained) of J, subject to the end
point condition =.(t) = z. To obtain &(t), one minimises W(z,t) over ::

W(I(t),t) < W(z,t) for all E R". (26)

a

V"



k

Notice that the definition (23) for W(x,t) makes sense for y E o n C'.
We can directly interpret (13) as the Bellman equation of another optimal
control problem (see (40)-(42) below), with S(x,t) as its value function.
This makes sense for all y E flo, since I' does not appear. Thus defining
14'(x,t) by (17) is valid for any y E fo. If y E fi nl C', these definitions
coincide.

Now we prove that W(z,t) is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation (24). Our assumptions imply that f
is a complete vector field. Therefore U.,j 0 0 for all z E R"', 0 < t < T,
and consequently '(x,t) < oo. We do not assume existence of optimal
controls.

The following definition is taken from Crandall, Evans and Lions 14,.
Write C - C(J1R x (0,T), IR), and similarly for C.

Definition Let HW E C. 1'e saL that W is a viscosity subsolution of (24)
provided that for all 0 E C' the following property holds:

if R - 0 attains a local maximum at a point (Xt), then

3,O(x,t) + J(x,t,D0(x,t)) < 0. (27)

W'e say that H' is a viscosity supersolution of (24) provided that for all
* E C' the following property holds:

if 14 - 0 attains a local minimum at a point (Zt), then

+ H(z,t,D0(z,t)) > 0. (28)

If W is both a viscosity subslution and supersolution, we say that W' is a
viscosity solution of (24).

Lemma 3.1 (Principle of Optimality) Let 0 < tj 5 t2 < t, and choose
(zo, u) E Uz ,. Then

Si w((t),t 2 ) < w(z5( 1 ),t,) + ,2L(zu(s),u(s),s)ds. (29)

Proof: Let (io,i) E Uzdc,),. Define

6

'NiN

AAZ



a

Then ui E Uxkft,)j,, and hence

l4'(-T(t 2 ), t2) 5 SO(i~j4 + j TLzs), C(s), s)ds

ak+ing te.

Taking the infimum of the right hand side over (iuu) E U(ti),t, we obtain
(29). D

Fix (z,t) and choose " > W(zt). Define

u., = {(zo,u) E U., J,(xo,,U) <}

B, = {x' R'" :-izl:<c).

Lemma 3.2 Fiz c > 0. Then there exists q1 > 0 such that if (zou) E U.j
then x.(t - h) E B, for all 0 < h :_ q.

Proof: Note that zx(t) = X E A. Define

,= sup{h > 0 : z, (s) E B, for all s E [t - h, t}.

Then Ix.(t - v.) - z 1= c. Let
1) inf ;7..

(80,) C 11.7.,

We want to show that v > 0. Suppose not; q7 = 0. Then there is a sequence
* (z , u") E Lt,, with ,. -, 0 as n - oo. Write z. = zu., etc.

Now f is continuous, so there is a constant K > 0 such that I f(x') I< K
for all z' E B,. Then

0 < £ = I -X"(t- n.)I

< (I f(Z.(8)) 1 + I Un (s) I)ds

5 K1_ -n + f u.(s) Ids

7Li
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Choose N > 0 such that n > No implies Ki',, < t/2. Then

0 < t,2 < j u.(s) I d forn > N,.

*, (Note that if U is bounded, then the lemma follows from this inequality.)
Next, since (Zt,u") E 1"t it follows that

f Iu(s) 12 d <

Then

0 < c/2 < u,(s) Ids

< %/'fTr- for n > No,

using the Cauchy-Schwarz inequality, which is impossible since - 0.
Consequently 17 > 0 proving the lemma. El

Theorem 3.1 The value function W(x,t) defined by (23) is the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation (24).

Proof: First we show that W(Zt) is a viscosity subsolution. Let 0 E C'
and suppose that 4' - 0 attains a local maximum at (z,t). Then there
exists l > 0 such that

,(X, - O(X,t) > w(z',t') - (',t') (30)

for all ' E B,, I t - t' j< c.
Choose a constant control u(s) -s E U. There is an zo such that

*(zo,u) E 1.. Choose 0 < 6 < ( such that z.(8) E B, for It - a j< 6. Set
t'= X- , z' = z,(t'). Select (z ),u') E Z4,.. and define

0*() t< 8< t.

The Principle of Optimality (29) implies

w(, w(xG(t- h),t- h) + -A



If 0 < h < 6, then (30) gives

,t) - (x,) (t - h),t - h) - ,( (t - h),t - h). (32)3Combining (31) and (32) we obtain

- h),t - h) - O(z,t) I p ,
-L(xa(s), (s), s)ds < 0.

Letting h --# 0 we have

(z,t1) + DO (z,t) (f(x) + u) - L(z,u,t) 5 0.

But this holds for all u E U, hence (27) and so W(z,t) is a subsolution of
(24).

To see that W(x,t) is a viscosity supersolution, let 0 E C 1 and suppose
that W - 4 attains a local minimum at (z,t). Then there exists an c > 0
such that

""(xt)(x,)(x,t) < W(z',t') - ¢(x',t',) (33)

for all z'E B,, I t'- t 1 j .

Suppose, contrary to (28), that there exists a 9 > 0 such that

4 9,(z,t) + H(z,t,DO(z,t)) < -6 < 0.

By continuity, reducing t > 0 if necessary,

yj(z',t') + uax{DO(z',t') (f(x') + u,) - L(',t,,t')} < -0 < 0 (34)

for all Z' E B,, ) t-t' 1< c. Let y > W(z,t) and Jet q/be given as in Lemma
* 3.2. By the Principle of Optimality (29) we have

M Z )n {WV(x,(t -h),t -h) + L(z,,(s),u(s),s)ds}. (35)
W(z,t) -n,

Let 0 < h < 17 A t, and choose (z 0 , u) E U',, such that

w(:,,(t - h),t - h) +. L(z. (a), u(s),,s) < w,) + 2 (36)

, ,
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Since z,,(t - h) E B,, we have from (33)

,,-ht-hA) - ,(t - h),t - h) > W~z,t) - (z, t). (37)

Combining (36) and (37) we have

0 ~ (z~t -h),f - h) - it
2 < -h 1, L(x,, (s), u(s),s) s. (38)

However, for t - h < s < t, x,,(s) E B, and Jt - s j< t, so from (34) we
have

,' .(s),,) + D,(x (s).,)(/(x.(s)) + ,,(s)) - ~z((s),,,(,).,) < -6.

Integrating, we obtain

-(.,t) - O(z.(t - h),t - h) I r t
A:-u.h - (s),s)ds < -0. (39)

But (38) and (39) contradict each other, so we must have 6 < 0; proving
(28). Thus W(z,t) is a supersolution of (24).

The uniqueness assertion follows from Ishii [121, Theorem 1. In fact,
since So(z) is uniformly continuous, it follows that '(x,t) is also uniformly
continuous. 1

Finally we state an optimal control problem for which S(z,t) is the
value function. Consider the dynamics

o = g(,) + U, z(0) = X0. (40)

We wish to minimise

Is J(ZO,U) = SO(zo) + f ~I U(,s) 12 +V(z U s) S) ds. (41)

Denote by &t the corresponding class of admissible pairs (xo, u). Define
S(z,t) inf I,(zo, u). (42)

S, (Ro,,,) E 7,.,

The above arguements can be used to prove the following.

Theorem 3.2 The value function S(z,t) defined by (42) is the unique
viscosity1 solution of the Hamilton-Jacobi equation (13).

10
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4 Some Estimates
Let St (z,t) be the solution of (ii). In this section we obtain estimatesfor S' I and I DS' ion compact subsets independent of the parameter t.These estimates will be used in Section 5 to prove that S' - S.

Theorem 4.1 For every compact subset Q C R' x 10,T], there eziststo > 0 and K > 0 such that for 0 < c < cc we have
IS'(z,t) I < K, for all (z,t) E Q, (43)

DS'(x,t) I K, for all (z,t) E Q. (44)

To prove (43), we use a comparison theorem which depends on themaximum principle for linear parabolic PDE. Let BR C R" denote theclosed ball centred at 0 with radius R > 0, write rR = B, x {O)uOBR x 10, Tjand define QR -- B x [0, T], denoting by Q' its interior.

Lemma 4.1 (Afaximum Principle, Friedman [11) Define

tw = 2w + Dwb',

where ' is smooth. If Lw < 0 (Lw > 0) in Q', then

w(Z ,) _< sup w(' ,) inf W (Z,s) < w(Zt))
(, ) r ( ) E r R

* for all (z,t) E QR.

Lemma 4.2 (Comparison Theorem) Let S' be a solution of (11), and

define
iv = Av-2Av+Dvg.+.Dv 

I' -W22
Let w = v- S'. If iv 0 (Zv < O) in Q3, and if S' < v (v < ) on rt,Sthen S' < v (v < S') in. OR

p.-

11
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Proof: If Lv > 0, then

.a - - Dwg'+ DS' 1-2 -jD .2 > o.

Now I DS' 12 _ 1 Dv I'= Dw (Dv + DS')'. Set

1
' = g' + (Dv + DS').

Then Lw > 0 and on rR, w(:,s) 2 0. Hence w(x,t) 2 0 for all (x,t) E QR
by Lemma 5.1 0

Proof of Theorem 4.1: We now construct a function v such that 1v ? 0

in Q' and S' < v on rR, independent of (sufficiently small) f > 0 (Evans-
Ishii '5:). Define

-. 1
v(Z, t) = p-t + M, (45)i RI- x 11I

where the constants p > 0, M > 0 are to be chosen.

We write v, for v.., etc. Then
I% ( 2n 8t1tx

2 (R2- Ix T2) + (R 2- Ix 12)3

n 2g'zi 21 I'+L.- (R2 - I 12) + (R 2 - I T 12)4

-C((R2 T I1)' (R 2 - I x I

+ 21:1' _(RI- I+ TI1)4

* 0in Qt,

for all small c > 0, provided p is chosen sufficiently large. Choose M so

large that
* So(z) <_ M for all z E Bt.

Now v(z,t) -. oc as I x I- R uniformly in 9 E 10,T], hence

S' < v in Qj,

12



and since v is continuous in Q0, there is a constant K > 0 depending on R
such that

S'(z,t) K for all (z,t) E QR/2,

for all sufficiently small e > 0.
Similarly we can find a lower bound for S' on QR/2.
Next we estimate the gradient, using a variant of the techniques used

in Evans and Ishii 15], as suggested by Evans. To simplify the notation we
write v = S', which from (11) satisfies

V. - 2 + i.V, + ,Vg'-V = 0, (46)

where we have used the summation convention. Let Q CC Q' CC _n x
(0, T), where Q, Q' are open and "cc" means "compactly contained in".
Choose C such that C = I on Q and C S 0 near SQ', and define

z = C2v'v - AV (47)

where the constant A > 0 is to be chosen.
Suppose that z attains its maximum over Q' at (zo,to) E Q'. Then we

have
has = 0 and (48)

0 < 9- AZ% (49)
2

at the point (zo,to). Then at this point, using (49),

0 <_ 2Ctvjvk + 2C 2vkvg - AvI

-cC,vkvk - tCvjv, - 41Cvkvw.

(.2 2 C

2

< -Cf' ID'v I +2f'v'k (va- l

forsuficintl smll.+A (-vs + !%,) + C IDv 12

for c sufficiently small. Using (46) we find that

0 Va (C 2vivi), - gf' (C'vkv,). vv Cc' I Dv Is

+C I Dv I +AC I Dv I+AC.

13



This together with (48) implies

S ID, 2  Cc IDt. CDv I" +AC Dv +AC. (50)

Let
A prmax I DvI+1] (51)

Then
f IDv'sI Dv I' [max c Dv]+l],

and from (50),

Choosing j so large that p/4 < g/2 - C, we have from (52)

SDv I' < CA at (xoto). (53)

This implies
z < CA in Q'. (54)

If it happened that (z0, to) E aQ', then

z = -Av < CA at (zo, to),

and this also implies (54). But from (54),

Smaxc2lDv 2 < maxz+CA < CA,

and using the definition (51) we have

maxC2 I Dv 12 < CpmaxC I Dv 1+1)

which implies

I Dv 1 :5 C in Q',
and hence

IDv 1 < C in .

This completes the proof of Theorem 4.1. 0

1%
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5 Main Result

We are now in a position to state and prove our main result.

Theorem 5.1 Under the above assumptions, we have

Iirmlogq'(z,t) = -W(X,t) (55)

uniformly on compact subsets of I?" x !0,TI, where W(x,t) is defined by
(17).

Proof: From Theorem 4.1 and the Arzela-Ascoli theorem, there is a sub-
%sequence rt - 0 such that SIA converges uniformly on compact subsets to

a continuous function . By the "vanishing viscosity" theorem, Crandall
and Lions [3', S is a viscosity solution of (13). By uniqueness, Theorem
3.2, =S. In fact, S' - S as -- .

From this we have

limelogq'(x,t) = - (S(z,t) - li(t)h(z))

uniformly on compact subsets, for y E 11c. Using the definition (17) of
W(z,t) completes the proof. [D

6 Large Deviations

We have seen that the optimal control problem associated with determin-
istic estimation plays a key role in studying the asymptotics of the Zakai
equation (5). In this section we shall see that this control problem is exactly
the variational problem arising in a large deviation principle for certain con-
ditional measures.Si: We begin by reviewing the results in Hijab fill. Fix zo and consider

n iethe stochastic differential equation (3), with initial condition x. = zo for
all i > 0. Let be an unnormalised conditional measure on 11"
C(O, TJ, I") of z' given y E fl 0 and the initial condition zo. As in Section
3, given a control 9 - u(t), let z, denote the corresponding trajectory of
(18). Hijab fill proved the following.

0



1%, Theorem 6.1 For anyI opcn subset 0 and any closed subset C of fl",
Jim_.inf iogQ Tf.I,o)(0) k -I(xo,y€,l)

Jim sup (logQ,.J(V...)(C) :5 -1(zo, y,C)

where for A C f1n,
(I1U s 12 +(X.(s))2)

(xc, Y, A) =inf { 0j( ~)1 +h~z() 2 ds (56)

_fT I
- h,(s))dy(s) I =z,(O) = zo, zu E A

* with the understanding that the infimum over an empty set is infinite.

Now let the initial conditions of (3) be random with unnormalised den-sity defined by (4). Let be an unnormalised joint conditional mea-

sure of (x', x) on flf x 1 " given Y E flo.

Theorem 6.2 For any open subset 0 and any closed subset C of f)", and
for any, open subset Oc, and any closed bounded subset Co of R", we have

liminfelog Q[,ob( 0 x 0o) > -J(0 x 0o, V) (57)

ir sup clog Q,(.=)jv (C x C0) < -J (C x Co, y) (58)
,t-0

where for A x Ae C nn x JRn,

J(A x Ao, Y) = inf {So(Zo) + I(ZO, yA)}. (59)
/ COEAO

To prove this theorem we employ the following version of Laplace's
asymptotic method, adapted from Freidlin and Wentzell [8].
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Lemma 6.1 Let f : - ? be Bord measurable, bounded below, and let
C, be a family of positive real numbers such that lirn,-0 c log C, = 0. Then
for anyj Borel subset A and any bounded Borel subset B of IR" we have

Jim lgfCexp f(z) dx > inf f(x), (60)

lim sup l < oinfgf(). (61)4-0 fB S E B

Proof: Let m = inf,1EA f(Z). If n = oc, the result is clear; so assume
rn < oc. For any6 > 0 define

A6 = (z E : f(z)<,,.+6, I z<R},

where R is chosen large enough to ensure A 6 0 0. Then A6 is a bounded
Borel subset of A, and

IA ( C, exp /- Cexp (-m+6) ).p > ,,cJ ( ,Cerb-1y ~))
:-: _( -;(m + ) ,

and hence
"£ lim inf , log C, exp f- I(z) dz > --(m - 6).-- f

This holds for all f > 0, hence (60) follows.
Next, write n = infEB and assume rn < oc. Then

JCexp (rz))dz :5 fCexp(I m dz,

from which (61) follows. D

Proof of Theorem 6.2: From Theorem 6.1, for any 6 > 0 there exists
0,t > 0 such that for 0 < c < t0 ,

Qe1 ,.) (0) ? exp ((Zo,. 0) +,))
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~Then

QThn }I,(( x o = 10o (") "q°(zo)dzo

! f C exp(- 3 (So(zo)+J(zo,y,O)+) dzo.

Applying (60) we have

Jim inf flogQ[,,,)I1 , (0 x 0o) -J(O x Oo,Y)- 6.
t-0

However, 6 > 0 was arbitrary; hence (57).
The estimate (58) follows from

Q',(,,.,) (C) exp (- (J,, Y, C) - b))

for c sufficiently small, using (61). 0
I,t

Note that the variational problem (59) corresponds to the optimal con-
trol problem (18)-(23) discussed in Section 3. Theorem 6.2 implies that
the limiting measure is concentrated on the optimal initial condition zx

*and optimal trajectory z'(s), 0 < s < T.
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